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TWO INEQUALITIES FOR MEDIANS AND
ANGLE BISECTORS OF A TRIANGLE

Malisa R. Zizovié and Milorad R. Stevanovié

Abstract. In this paper we prove two inequalities for sum of
quotients of angle bisectors and medians of a triangle.

First of all, let us introduce the following notations:
— a, b, ¢ are sides of a triangle;
— A, B, C are vertices of a triangle;
— R, r are radius of circumcircle and of incircle;
— & is semi-perimeter;
— W,, Wy, W, are angle bisectors of a triangle and

— mg, My, m. are medians of a triangle.

Theorem 1. For any triangle holds:
: 2
W, a
1 — - .
0 S re>s-Y(5)

Proof. A4, = ngb?_—f_-lf where A;, A; are the endpoints of bisector

w, and median m, on the side BC of triangle ABC. In triangle ABC we
have:

We ArAg b - cla
e N i T R L S b
2) me ! my ! 2(b+ c)m,
The inequality:
|6 — cla a?

(3) 2(b+ c)ym, < (b+ ¢)?
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is equivalent to:

(3% a? [(b —c)?+(b+tc—a)bte+ a)] > (b—¢)*(b+¢)?,

(a+bdb+c)at+b—c)a+c—-b)b+c—a)>0.

Inequalities (2) and (3) imply:

2
Wq a
) m_a>1_(b+0>

From this inequality, (1) follows immediately.
Corollary 1. In any triangle holds:

We 16(Rr + r%)s? — 4R?r?
(5) > mg >1 (s? + 2Rr + r%)?

2
Proof. Bu computing 3 (b-i-Lc) we get (5), from (1). O

Corollary 2. For each triangle, hold the inequalities:

\

Wq
6 E — >1 .
®) Mg >1te (222 4+ 3z + 2)?

122° + 28z% + 31z + 16 L (x_ r)
b R .
Proof. The function given by ratio in (5), as function of S, is
monotonic decreasing, and inequality (6) follows from (5) by applying of
Gerretsen’s inequality:

(7 s> <4R* 4+ 4Rr + 3r% .

Remark 1. Function of z, in (6) is defined in region 0 < z < 3.
Minimum 1 of that function is reached in degenerative triangle:

b=c=my=w,, a=wy,=w,= my, = me = =,

2

0,
b
r=0 and R_E'
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Remark 2. Because of:

Zbic>z<bic)2

the inequality

: 2
Wq a
Z Ma >3- Z (b + C)
is stronger then the inequality
W, a
Z m—a >3- Z bt

given by the same authors in paper [2].

Theorem 2. In triangle with a > b > ¢ holds true the inequality:

Z&>3 2a 82 — Rr — r?
Mg 2s—a S$24+2Rr+712°

(8)
Proof. If in nonisosceles triangle, we introduce z,,2y,2. by:

(9) V1+24|b—c|=2m,, V1+2|c — a|=2my, V1+2.|a — b|=2m,

and if we put: z = min{z,, 2, 2.}, then from (2) we have:

Wq 1 a 1 a
10 — >l — 2> 1- .
(10) mq Vit+z, b+c™ 1+2z b+ec
and, of course:
W 1 a
— >3-
z:ma \/1+z2b+c
Using the equality:
Z a _232—Rr—r2
b+c s+ 2Rr+r?
we get:
We 2 s2 — Rr —r?

11 Yo o 3. :
(1), Zma>3 V1+z s2+2Rr+ 72
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from (8) and (9) we have:
a b c 1

1 1
. . >
2s~a>\/1+za 2s—b>\/1+zb 2s—c¢ 14 2z

and because of a > b > ¢, also:

(12) ° = ma.x{ a b }>

25— a 2s—a’2s—b"2s—¢

1 1 a
> max{ —, , ———
{\/1+za V1+z \/1+zc}

Inequalities (11) and (12) together imply inequality (8). In the case of
equilateral triangle, inequality (8) is true, without introducing of elements
24, 2b, 2c. In isosceles triangle with two equal sides, as for example with
a > b = c we have (10) satisfied with

W, 1 a 1 a
. = R —=1- — l]— —-
z o0 Mg V14 2z, b—l—c> V1i4+z b+

and the rest of the proof is the same as in the case of nonisosceles triangle.

Corollary 3. Using the inequality (7) in (8) we get:

&>3_ a 4AR? + 3Rr + 2r?
Mg 2s—a 2R?*4+3Rr+2r2°

(13)

Remark 1. Since 32— < 1, inequality (13) is stronger than in-
equality

Wa s% + 8Rr + 5r?
mg s24+ 2Rr + 12

given in the paper [2].
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