TWO INEQUALITIES FOR MEDIANS AND ANGLE BISECTORS OF A TRIANGLE

Mališa R. Žižović and Milorad R. Stevanović

Abstract. In this paper we prove two inequalities for sum of quotients of angle bisectors and medians of a triangle.

First of all, let us introduce the following notations:

- -a, b, c are sides of a triangle;
- -A, B, C are vertices of a triangle;
- R, r are radius of circumcircle and of incircle;
- -s is semi-perimeter;
- w_a , w_b , w_c are angle bisectors of a triangle and
- m_a , m_b , m_c are medians of a triangle.

Theorem 1. For any triangle holds:

(1)
$$\sum \frac{w_a}{m_a} > 3 - \sum \left(\frac{a}{b+c}\right)^2.$$

Proof. $A_1A_2 = \frac{|b-c|a}{2(b+c)}$ where A_1, A_2 are the endpoints of bisector w_a and median m_a on the side BC of triangle ABC. In triangle ABC we have:

(2)
$$\frac{w_a}{m_a} \ge 1 - \frac{A_1 A_2}{m_a} = 1 - \frac{|b - c|a}{2(b + c)m_a}.$$

The inequality:

(3)
$$\frac{|b-c|a}{2(b+c)m_a} < \frac{a^2}{(b+c)^2}$$

AMS(MOS) Mathematics Subject Classification 1991. Primary: 51M16. Secondary: 65F35.

Key words and phrases: Geometrical Inequalities, Inequalities for bisectors and medians of triangle, Inequalities of triangle.

is equivalent to:

(3')
$$a^{2} \left[(b-c)^{2} + (b+c-a)(b+c+a) \right] > (b-c)^{2}(b+c)^{2},$$

and to:

$$(a+b+c)(a+b-c)(a+c-b)(b+c-a) > 0$$
.

Inequalities (2) and (3) imply:

$$\frac{w_a}{m_a} > 1 - \left(\frac{a}{b+c}\right)^2$$

From this inequality, (1) follows immediately.

Corollary 1. In any triangle holds:

(5)
$$\sum \frac{w_a}{m_a} > 1 + \frac{16(Rr + r^2)s^2 - 4R^2r^2}{(s^2 + 2Rr + r^2)^2}.$$

Proof. Bu computing $\sum \left(\frac{a}{b+c}\right)^2$ we get (5), from (1). \Box

Corollary 2. For each triangle, hold the inequalities:

(6)
$$\sum \frac{w_a}{m_a} > 1 + x \cdot \frac{12x^3 + 28x^2 + 31x + 16}{(2x^2 + 3x + 2)^2} > 1$$
, $\left(x = \frac{r}{R}\right)$.

Proof. The function given by ratio in (5), as function of S, is monotonic decreasing, and inequality (6) follows from (5) by applying of Gerretsen's inequality:

$$(7) s^2 \le 4R^2 + 4Rr + 3r^2 .$$

Remark 1. Function of x, in (6) is defined in region $0 < x \le \frac{1}{2}$. Minimum 1 of that function is reached in degenerative triangle:

$$b=c=m_a=w_a,\quad a=w_b=w_c=0,\quad m_b=m_c=rac{b}{2},$$
 $r=0\quad and\quad R=rac{b}{2}\,.$

Remark 2. Because of:

$$\sum \frac{a}{b+c} > \sum \left(\frac{a}{b+c}\right)^2$$

the inequality

$$\sum \frac{w_a}{m_a} > 3 - \sum \left(\frac{a}{b+c}\right)^2$$

is stronger then the inequality

$$\sum \frac{w_a}{m_a} > 3 - \sum \frac{a}{b+c}$$

given by the same authors in paper [2].

Theorem 2. In triangle with $a \ge b \ge c$ holds true the inequality:

(8)
$$\sum \frac{w_a}{m_a} > 3 - \frac{2a}{2s - a} \cdot \frac{s^2 - Rr - r^2}{s^2 + 2Rr + r^2}.$$

Proof. If in nonisosceles triangle, we introduce z_a, z_b, z_c by:

(9)
$$\sqrt{1+z_a}|b-c|=2m_a, \ \sqrt{1+z_b}|c-a|=2m_b, \ \sqrt{1+z_c}|a-b|=2m_c$$

and if we put: $z = \min\{z_a, z_b, z_c\}$, then from (2) we have:

(10)
$$\frac{w_a}{m_a} > 1 - \frac{1}{\sqrt{1+z_a}} \cdot \frac{a}{b+c} \ge 1 - \frac{1}{\sqrt{1+z}} \cdot \frac{a}{b+c}$$

and, of course:

$$\sum \frac{w_a}{m_a} > 3 - \frac{1}{\sqrt{1+z}} \sum \frac{a}{b+c}$$

Using the equality:

$$\sum \frac{a}{b+c} = 2 \frac{s^2 - Rr - r^2}{s^2 + 2Rr + r^2}$$

we get:

(11)
$$\sum \frac{w_a}{m_a} > 3 - \frac{2}{\sqrt{1+z}} \cdot \frac{s^2 - Rr - r^2}{s^2 + 2Rr + r^2}$$

from (3) and (9) we have:

$$\frac{a}{2s-a} > \frac{1}{\sqrt{1+z_a}} \cdot \frac{b}{2s-b} > \frac{1}{\sqrt{1+z_b}} \cdot \frac{c}{2s-c} > \frac{1}{\sqrt{1+z_c}}$$

and because of a > b > c, also:

(12)
$$\frac{a}{2s-a} = \max\left\{\frac{a}{2s-a}, \frac{b}{2s-b}, \frac{c}{2s-c}\right\} > \\ > \max\left\{\frac{1}{\sqrt{1+z_a}}, \frac{1}{\sqrt{1+z_b}}, \frac{a}{\sqrt{1+z_c}}\right\}$$

Inequalities (11) and (12) together imply inequality (8). In the case of equilateral triangle, inequality (8) is true, without introducing of elements z_a , z_b , z_c . In isosceles triangle with two equal sides, as for example with a > b = c we have (10) satisfied with

$$z_a = \infty$$
, $\frac{w_a}{m_a} = 1 - \frac{1}{\sqrt{1+z_a}} \cdot \frac{a}{b+c} > 1 - \frac{1}{\sqrt{1+z}} \cdot \frac{a}{b+c}$

and the rest of the proof is the same as in the case of nonisosceles triangle.

Corollary 3. Using the inequality (7) in (8) we get:

(13)
$$\sum \frac{w_a}{m_a} > 3 - \frac{a}{2s - a} \cdot \frac{4R^2 + 3Rr + 2r^2}{2R^2 + 3Rr + 2r^2}.$$

Remark 1. Since $\frac{a}{2s-a} < 1$, inequality (13) is stronger than inequality

$$\sum \frac{w_a}{m_a} > \frac{s^2 + 8Rr + 5r^2}{s^2 + 2Rr + r^2}$$

given in the paper [2].

1. References

- [1] D. S. Mitrinović, I. E. Pečarić and V. Volenec: Recent advances in geometric inequalities, Kluwer, Dordrecht, Boston, London, 1989.
- [2] M. R. Stevanović and M. R. Žižović, Some inequalities for bisectors and other elements of triangle, Math. Moravica, 1 (1997), 93-100.

Tehnički fakultet Svetog Save 65, 32000 Čačak Yugoslavia

Received

e-mail Zizo@tfc.tfc.ka.ac.yu Steva@tfc.tfc.ka.ac.yu